
Progression from latent infection to active disease in dynamic 
tuberculosis transmission models: a systematic review of the 
validity of modelling assumptions

Nicolas A Menzies, PhD, Emory Wolf, BSc, David Connors, BA, Meghan Bellerose, BA, 
Alyssa N Sbarra, BS, Ted Cohen, DPH, Andrew N Hill, PhD, Reza Yaesoubi, PhD, Kara 
Galer, MPH, Peter J White, PhD, Prof. Ibrahim Abubakar, PhD, and Prof. Joshua A Salomon, 
PhD
Department of Global Health and Population (N A Menzies PhD, E Wolf BSc, D Connors BA, M 
Bellerose BA, K Galer MPH, Prof J A Salomon PhD) and Center for Health Decision Science (N A 
Menzies), Harvard TH Chan School of Public Health, Boston, MA, USA; Department of 
Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA (A N 
Sbarra BS, T Cohen DPH, R Yaesoubi PhD); Division of TB Elimination, US Centers for Disease 
Control and Prevention, Atlanta, GA, USA (A N Hill PhD); MRC Centre for Outbreak Analysis and 
Modelling and NIHR Health Protection Research Unit in Modelling Methodology, Imperial College 
London, London, UK (P J White PhD); Modelling and Economics Unit, National Infection Service, 
Public Health England, London, UK (P J White); Institute for Global Health, University College 
London, London, UK (Prof I Abubakar PhD); and Center for Health Policy and Center for Primary 
Care and Outcomes Research, Stanford University, Stanford, CA, USA (Prof J A Salomon)

Abstract

Mathematical modelling is commonly used to evaluate infectious disease control policy and is 

influential in shaping policy and budgets. Mathematical models necessarily make assumptions 

about disease natural history and, if these assumptions are not valid, the results of these studies can 

be biased. We did a systematic review of published tuberculosis transmission models to assess the 

validity of assumptions about progression to active disease after initial infection (PROSPERO ID 

CRD42016030009). We searched PubMed, Web of Science, Embase, Biosis, and Cochrane 

Library, and included studies from the earliest available date (Jan 1, 1962) to Aug 31, 2017. We 

identified 312 studies that met inclusion criteria. Predicted tuberculosis incidence varied widely 

across studies for each risk factor investigated. For population groups with no individual risk 
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factors, annual incidence varied by several orders of magnitude, and 20-year cumulative incidence 

ranged from close to 0% to 100%. A substantial proportion of modelled results were inconsistent 

with empirical evidence: for 10-year cumulative incidence, 40% of modelled results were more 

than double or less than half the empirical estimates. These results demonstrate substantial 

disagreement between modelling studies on a central feature of tuberculosis natural history. 

Greater attention to reproducing known features of epidemiology would strengthen future 

tuberculosis modelling studies, and readers of modelling studies are recommended to assess how 

well those studies demonstrate their validity.

Introduction

Latent infection is a defining feature of tuberculosis epidemiology. On infection with 

Mycobacterium tuberculosis, approximately 5% of otherwise healthy adults will develop 

active disease within 2 years (so-called fast progressors).1,2 Individuals who do not have 

rapid progression are classified as having slow-progressing latent tuberculosis infection. 

With latent infection, individuals experience no adverse health effects and will not transmit 

M tuberculosis, but they face an ongoing risk of developing active tuberculosis through 

reactivation. For individuals with long-established infection, the annual risk of active 

tuberculosis is low; empirical estimates are on the order of 10–20 per 100 000 individuals.3 

However, as a result of high prevalence of latent tuberculosis infection in many settings,4 

reactivation can represent a substantial proportion of incident tuberculosis cases, or even the 

majority of such cases in settings in which transmission has been in sustained decline.5 The 

risk of progressing to active disease also varies by individual characteristics, with infants,6 

individuals with advanced HIV infection,7,8 and individuals with other conditions that affect 

immune function9–12 having elevated progression risks.

Since tuberculosis interventions can prevent transmission, they generate benefits beyond the 

individuals receiving the intervention. Furthermore, the potential delay between infection 

and disease means that the consequences of improved control can be spread over many 

years. For these reasons, it is difficult for empirical tuberculosis policy evaluations to capture 

all effects, and studies that forecast future disease trends or compare competing disease 

control policies commonly estimate results using dynamic transmission models. These 

models represent the mechanisms of transmission, natural history, and health system 

interactions that generate tuberculosis outcomes.13,14 Despite more than a century of 

epidemiological research into tuberculosis, concrete evidence for these underlying processes 

is imperfect,15 and studies have taken various approaches for constructing and 

parameterising transmission models. This variation can be consequential: in a modelling 

collaboration examining the post-2015 End TB Strategy,16 variation in epidemiological 

assumptions was identified as a cause of the wide range of estimates produced for the health 

impact17 and cost-effectiveness18 of expanded tuberculosis control. Several reviews13,14,19 

have described standard tuberculosis modelling approaches, and methodological studies20–25 

have examined specific modelling approaches. However, little systematic investigation has 

been done of assumptions made by published tuberculosis models. If these assumptions are 

not valid, the results of these studies could be biased.
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To assess the validity of assumptions about progression to active disease after initial 

infection, we did a systematic review of published studies using dynamic tuberculosis 

transmission models. We describe how these studies modelled progression from initial 

infection to active disease, and the implications of these assumptions for predicted 

tuberculosis outcomes. We compare model predictions with empirical data26–28 and discuss 

the consequences for future modelling studies.

Methods

Search strategy and selection criteria

We identified eligible studies by searching PubMed, Web of Science, Embase, Biosis, and 

Cochrane Library. We also searched a publication database compiled by the TB Modelling 

and Analysis Consortium,29 reference lists of eligible publications, several non-indexed 

journals, and the personal databases of the authors to identify publications not included in 

the electronic search (appendix p 2). We collected studies from the earliest available date 

(Jan 1, 1962) to Aug 31, 2017. We included published studies using transmission dynamic 

models of tuberculosis in human populations to describe tuberculosis epidemiology or to 

evaluate competing policy options. We excluded analyses in which the force of infection was 

not modelled (ie, were not transmission dynamic models) and studies that provided 

insufficient information to describe the model structure representing progression to active 

disease after initial infection, the associated parameter values, and the population group (or 

groups) represented by the model, such that we could not reconstruct this part of the model. 

We also excluded non-English language studies and unpublished reports. As one intent of 

this Review is to describe the quality of assumptions made by modelling studies, we did not 

exclude studies on the basis of quality criteria. The quality of studies was judged by their 

ability to reproduce empirical data, and these findings are reported in the results section. No 

additional quality assessment was done. We followed Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines30 and registered our protocol 

with PROSPERO (CRD42016030009).

Identification of studies

Titles and abstracts of collected studies were screened by one of two reviewers (EW and 

MB) to remove studies not meeting the inclusion criteria that could be judged on the basis of 

the title and abstract alone (eg, non-English language studies and non-transmission dynamic 

models). We retrieved the full texts for the remaining articles. Articles were assessed 

independently by two of five reviewers (ANS, EW, DC, KG, and MB) to confirm that they 

met inclusion criteria. Disagreements were resolved by discussion between the two 

reviewers.

Extraction

For each study, we extracted bibliographic information as well as information on the study 

setting and how the model stratified the population by tuberculosis progression risk. For 

each of these model strata, we extracted data on model structure and parameter values 

describing tuberculosis progression. We also extracted the citations provided for parameter 

values. We did not extract information on tuberculosis progression risks after reinfection in 
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previously exposed individuals, for whom risks of primary progressive tuberculosis are 

lower than for unexposed individuals.31

We developed a typology of model structures and categorised models according to this 

typology (figure 1). In cases in which several different parameterisations were provided for 

the same population group, we used the values provided for the main analysis. If a study 

provided a point estimate as well as upper and lower bounds, we extracted the point 

estimate, and if a study only provided upper and lower bounds, we took the arithmetic mean 

of these values. For each paper, extraction was undertaken independently by two of five 

reviewers (ANS, EW, DC, KG, and MB). When extracted values differed between reviewers, 

the article was reviewed by an additional reviewer (NAM), and disagreements were resolved 

through discussion between the two reviewers and NAM.

Descriptive statistics

We calculated statistics to describe the distribution of studies according to publication year, 

setting, model structure, and population groups represented by model strata. We also 

identified the most commonly cited sources for model parameters.

Quantitative comparison of model predictions

We recreated the formulae of each model determining the risk of active tuberculosis for an 

individual initially infected with M tuberculosis, matching the model structures shown in 

figure 1. Using these formulae, and the parameter values extracted for each study and 

population group, we estimated the annual incidence of tuberculosis after initial infection in 

the absence of reinfection. For some studies, this evaluation involved modifications to the 

original approach. Whereas some studies implemented their analyses by sampling 

progression parameters from a distribution, we used the point estimate (commonly the 

distribution mean) reported in the original paper. Even if the point estimate is equal to the 

mean of the parameter distribution, small differences in simulation results can be produced 

because of the non-linear relationship between parameters and modelled outcomes. Some 

studies reported adjusting parameter values as part of model calibration, but did not report 

these adjusted values, and in these cases we used the original (unadjusted) values reported in 

the paper. In some models, individuals progress through multiple epidemiological or 

demographic processes simultaneously. If these processes influence tuberculosis progression 

or survival risks (eg, ageing and HIV progression), then accurately reproducing long-term 

cumulative incidence estimates is impossible without reconstructing all of these different 

model components. Because we only reconstructed the tuberculosis-specific parts of these 

models, we do not report long-term cumulative incidence estimates in the presence of time-

varying risk factors. We did not allow for background mortality. Although cumulative 

incidence estimates would be lower if background mortality were considered, this effect will 

be minor unless mortality rates are very high.

We stratified incidence predictions according to model structure, publication year, individual 

risk factors, study setting, and source of parameter assumptions. High-burden settings 

included countries on the WHO list of 30 countries with a high tuberculosis burden32 or, if a 

country was not specified, settings with an incidence of 100 per 100 000 individuals or 
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higher. Low-burden settings included countries not on the WHO list or with an incidence 

below 100 per 100 000 individuals. Studies with multiple HIV strata used various 

approaches for describing HIV progression. Late HIV was used for strata described as 

AIDS, WHO stage 4 disease, advanced HIV, or with a CD4 cell count of less than 200 cells 

per μL. Early HIV was used for HIV strata not classified as late HIV, in models with 

multiple HIV strata. We also distinguished model strata for HIV-positive individuals 

receiving antiretroviral therapy (HIV, on antiretroviral therapy). For age, we classified strata 

as infant, if the midpoint of the age group fell in the range 0–2 years, and classified strata as 

children (excluding infants) if the midpoint of the age band fell in the range 2–10 years. We 

divided studies into those published in 2010 or before (the median publication year) and 

those published after 2010, and according to whether the study cited any previous 

publications to justify parameter values for progression of latent tuberculosis infection.

We plotted annual and cumulative incidence predictions to understand the behaviour of each 

model and summarised results as cumulative incidence at 2 and 20 years. The 2-year 

timepoint was chosen to represent rapid progression to active disease (primary progressive 

tuberculosis), and the 20-year timepoint to represent aggregate long-term risk. For studies of 

multiple population groups with different tuberculosis risk factors, we calculated risk ratios 

for tuberculosis incidence over the first 2 years, and for the 20th year, to provide within-

study comparisons of how risk factors were treated.

Comparison with empirical evidence

We reviewed the tuberculosis literature to identify studies reporting direct empirical 

evidence on progression risks following initial infection. To identify these studies, we 

reviewed citations known to the authors, studies cited in related reviews, and evidence cited 

in the studies included in the systematic review. Because preventive treatment for latent 

tuberculosis infection reduces progression risks, the best evidence on natural history comes 

from historical studies done before preventive therapy became the standard of care for 

recently exposed individuals.33 Narrative reviews of these early studies have been compiled 

by Ferebee,1 Sutherland,2 and Styblo.34 From these reviews, we extracted information on 

studies reporting quantitative estimates of annual risks of developing active tuberculosis 

after initial infection. Many of these studies had major limitations for estimating general 

population progression risks in the absence of reinfection, including small sample sizes, 

non-representative populations, settings that were likely to feature ongoing transmission, and 

non-specific tuberculosis diagnostics. For other studies, the relevant features of study design, 

population, and setting were not sufficiently described or the original publication was not 

available. Two studies provided precise estimates of tuberculosis progression risks in the 

years following initial infection. In both cases, these estimates were from the control arm of 

an intervention trial: the British Medical Research Council’s BCG trials,26,27 which included 

12 867 individuals in the unvaccinated study arm, and the US Public Health Service’s trials 

of isoniazid prophylaxis for tuberculosis household contacts,28 which included 12 594 

individuals in the control arm. Using summary data from these two studies, we generated 

estimates of annual tuberculosis incidence for 10 years following tuberculin skin test 

conversion. We limited these comparisons to the first 10 years following infection to reduce 

the influence of attrition on the validity of empirical estimates. We compared these empirical 
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estimates to model predictions for population groups with no individual risk factors affecting 

tuberculosis progression risk. All analyses were done in R version 3.3.2.35 Replication data 

and analysis scripts are available at Harvard Dataverse.

The capacity of a model to fit the empirical estimates is determined by the model structure 

and the parameter values used. To separate these two factors, we assessed whether each 

model structure was capable of reproducing the empirical results by adjusting the parameter 

values. To do so, we created a simple loss function using the results from the British Medical 

Research Council’s BCG trials.26 This loss function represented the root mean squared error 

between model results and the empirical estimate for cumulative tuberculosis incidence over 

the first 10 years after infection. We used optimisation algorithms (the Nelder-Mead and 

Broyden-Fletcher-Goldfarb-Shanno algorithms operationalised by the optim function in R) 

to identify parameter values that minimise the loss function. We compared the predictions 

from these fitted models to the empirical estimates to understand the extent to which each 

model structure was capable of reproducing this evidence.

Results

Descriptive statistics on eligible studies

We identified 5532 unique articles in the first stage of the review, and excluded 5006 of 

these papers through title and abstract review, and a further 214 through full-text review. 312 

studies met inclusion criteria and were included in the analysis (figure 2; appendix pp 3–21).

The earliest study included in the Review was published in 1962, and 7% of studies were 

published before 2000. Of the 312 studies in the review (table), many included multiple 

strata to allow for differences in progression risk. A total of 680 observations were included 

in the analysis, where an observation represented an individual stratum within an included 

study. Most studies (62%) considered high-burden settings, and 39% included model strata 

considering individual-level factors that modify tuberculosis progression. The most common 

risk factor considered by these studies was HIV (25%), followed by age (9%). 12 different 

model structures were used by these studies (figure 1; appendix pp 22–23).

We identified the sources for tuberculosis progression parameters most commonly cited by 

the studies in the review. The three most commonly cited sources were Vynnycky and Fine36 

(cited by 21% of all studies), Blower and colleagues37 (12%), and Dye and colleagues38 

(10%), all of which are modelling papers included in our Review. The top 15 most cited 

sources included a mix of modelling studies, empirical studies, and review articles (appendix 

p 24). However, for 76 studies (24%), no citation was given for tuberculosis progression 

parameters.

Comparison of model predictions for population groups with no individual risk factors

We stratified model results by the population groups represented, study setting, model 

structure, and other study characteristics. Figure 3 presents model predictions of annual and 

cumulative tuberculosis incidence for model strata with no individual risk factors affecting 

tuberculosis progression, including model strata for healthy adults or for the overall 

population in those cases in which models did not stratify by age or other risk factor.
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We calculated the median prediction for annual and cumulative incidence for each year. 

Median annual incidence dropped from 77 cases per 1000 in the first year following 

infection to 1·7 per 1000 by year 20. Median cumulative incidence was 7·7% after the first 

year and 14·2% by the end of year 20. Substantial variation was found between the 

predictions of individual models, with incidence rate predictions varying by several orders of 

magnitude. For the first year after infection, the 90th percentile of incidence rate estimates 

was 52 times the 10th percentile (270 vs 5·2 per 1000). For the 20th year, the same ratio was 

786 (102 vs 0·13 per 1000). This variation is also evident in the cumulative incidence 

projections, with a ratio of 26 after 20 years (90% vs 3·5%).

Comparison of model predictions for different strata

Figure 4 presents the distribution of cumulative incidence predictions for various subsets of 

the model predictions after 2 years (commonly used to distinguish rapid progression from 

late reactivation) and 20 years. Cumulative incidence predictions were higher for strata 

including any individual risk factor, particularly HIV, than for those with no risk factors. 

Cumulative incidence predictions were higher for infants than for non-infant children. 

Distributions were approximately similar for studies done in high-burden and low-burden 

settings. Results for studies reporting no citations for tuberculosis progression parameters 

showed greater variation than did those with at least one citation, particularly for 20-year 

results. Studies published after 2010 had greater variation in 20-year cumulative incidence 

than did those published before that point. Results for the different model structures were 

somewhat similar except for structure A, which exhibited greater variation in cumulative 

incidence at both 2 and 20 years, and substantially higher median incidence at 20 years, than 

did other model structures. Median annual and cumulative incidence projections were 

stratified by model structure (appendix p 25). Whereas the trajectories of annual incidence 

differed by model structure, predictions produced using structure A were noticeably 

different from those produced by the majority of other structures, with no reduction in 

annual incidence over time, and steadily increasing cumulative incidence (this trend is also 

observed for predictions produced using structure J, although this approach was only used 

by one study).

We calculated incidence risk ratios associated with individual risk factors compared with 

model strata from the same study without the risk factor (ie, within-study comparisons; 

appendix p 26) and these results corroborate those shown in figure 4, with greater 

tuberculosis progression risk modelled for all forms of HIV (particularly advanced HIV), 

and reduced risk associated with provision of antiretroviral therapy for HIV treatment and 

late childhood. No clear trend was observed for the infant category: some models suggested 

increased risk and some suggested reduced risk compared with adulthood, with the median 

risk ratio close to 1·0. Much variation was seen between models across all of these 

comparisons, with the range of risk ratios for each comparison spanning several orders of 

magnitude.

Comparison of model predictions to empirical data

Figure 5 shows a comparison of the distribution of incidence predictions for population 

groups with no individual risk factors (5th, 25th, 50th, 75th, and 95th percentiles) with 
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empirical estimates for these same quantities. Although the model results reproduce the 

general trend of the empirical estimates, with annual incidence rates declining over time, 

much greater variation exists in the modelling results than in the empirical results, and 

median cumulative incidence after 10 years is 50–100% greater than both empirical 

estimates. For 10-year cumulative incidence, only 60% of modelling results were within a 

factor of two of either empirical point estimate, and only 77% were within a factor of five. 

10-year cumulative incidence was greater than 50% for 15% of all modelling results, and 

less than 1% for 4·6% of results.

As a sensitivity analysis, we assessed the extent to which each model structure could 

reproduce the empirical results. When we fitted each model structure to the empirical 

estimates from the British Medical Research Council’s BCG trials,26 most structures were 

able to closely approximate the cumulative incidence estimates; the exceptions were 

structures A, D, and J, and to a lesser extent structure E (appendix pp 27–28). When we 

reproduced the empirical comparison shown in figure 5 excluding structures A, D, and J, the 

variation was reduced but only modestly, with 71% of modelling results for 10-year 

cumulative incidence within a factor of two of the empirical point estimates, and 88% within 

a factor of five. For results derived from structures A, D, and J, 21% of modelling results for 

10-year cumulative incidence were within a factor of two of the empirical point estimates, 

and 40% were within a factor of five.

Discussion

We did a systematic review of studies using dynamic tuberculosis transmission models to 

understand how studies modelled progression to active disease after initial infection, and 

assessed the validity of modelling assumptions by comparing model results with empirical 

incidence estimates. We identified 312 studies that met our inclusion criteria, most of which 

were published after 2000.

We used the model structures and parameter values described by each study to reproduce the 

model predictions for tuberculosis incidence in the years following initial infection. These 

results demonstrated substantial disagreement between studies on a key feature of 

tuberculosis epidemiology: the rate at which individuals progress to active disease after 

initial infection. This variation was still apparent when we examined the subset of results 

that modelled the general population or population groups with no individual risk factors. 

When we compared the model results for groups with no individual risk factors with 

empirical evidence, a substantial proportion of the modelled results were found to be 

inconsistent with these data. For 10-year cumulative incidence, 40% of all modelled results 

were either more than double or less than half the empirical point estimates.

One potential explanation for these findings is that the model structures adopted by some 

studies were inadequate, and when we tried to fit each model structure to the empirical data 

we found that three structures (A, D, and J) provided poor fit to the empirical evidence. 

Structure A assumes that infection with M tuberculosis confers a constant rate of 

progression to active tuberculosis. This feature prevents these models from reproducing the 

declining time trend in tuberculosis progression risk shown in empirical data. By 
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construction, these models will underestimate short-term progression risks, overestimate 

long-term progression risks, or both. Structure D assumes immediate progression to active 

disease for all newly infected individuals. Although this assumption is inconsistent with the 

natural history of tuberculosis in immunocompetent individuals, this structure was only used 

for individuals with advanced HIV who experience rapid disease progression, so this use 

might not be problematic. Structure J produces progression risks that increase as a function 

of time since infection, which is inconsistent with the available empirical evidence.

Although structure E allowed for an immediate decline in progression risk following 

infection, the fit to empirical data was still crude. A recent study39 examining different 

model structures found that structure E performed either worst or second worst of the six 

structures examined (depending on the fitting method). In our analysis, structure E 

performed better than structures A, D, and J, but the root mean squared error was still ten 

times worse than that of the other structures. This finding is notable, given that almost 50% 

of published models adopted this structure. Whether this structure will produce valid results 

will depend on the analysis, but it is unlikely to be appropriate for analyses that need to 

distinguish the elevated progression risks several years after infection from the much lower 

risks many years later. Apart from structures A, D, J, and potentially E, the other structures 

reported in the modelling literature appeared to be reasonable based on their ability to 

reproduce empirical data when appropriate parameter values were used.

However, inadequate model structure provides only a partial explanation for the observed 

discrepancies. Even when we excluded structures A, D, and J, almost 30% of all modelled 

results were either more than double or less than half the empirical point estimates for 10-

year cumulative incidence. There are reasons to believe that the epidemiology of 

tuberculosis progression will differ between populations: as some of the model strata we 

investigated pertained to the general population, each population will represent a different 

mix of factors (such as nutrition, smoking, and diabetes) that affects progression risks. As 

the distribution of these factors changes between populations, so will tuberculosis 

progression rates. Studies in other low-burden settings have found similar results to those in 

the empirical studies we used. In an observational study40 of close contacts of tuberculosis 

cases in Australia, the authors estimated a cumulative incidence of 5·4% over 4·5 years of 

follow-up for adults converting to tuberculin skin test or interferon-γ releasing assay 

positivity. In a similar study in the Netherlands,41 the 5-year cumulative incidence of active 

tuberculosis in adults was 6·7%. For high-burden settings, it is possible that part of this 

burden is explained through elevated progression rates. Estimation of progression rates is 

difficult in settings with a high force of infection, given the need to distinguish reactivation 

from reinfection as a cause of incident disease, although some analyses have resolved this 

issue by studying individuals migrating from high-burden to low-burden settings.42–44 

However, differences in the distribution of factors determining progression risk are unlikely 

to explain the magnitude of variation that we observed in the modelling results. An 

alternative explanation is that a substantial proportion of these studies adopted assumptions 

that were incorrect, providing a poor representation of tuberculosis disease dynamics in their 

chosen population.
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For population groups with individual factors modifying tuberculosis progression risks, 

model results were generally consistent with empirical evidence: HIV positivity was 

associated with higher tuberculosis incidence than was HIV negativity, advanced HIV was 

associated with higher incidence than was early HIV,7,8 and antiretroviral therapy was 

protective against tuberculosis in HIV-infected individuals.45 Although early infancy is 

empirically associated with rapid tuberculosis progression,6 this association was not evident 

in the modelling results, potentially because of variation in the age ranges adopted by the 

models, and the fact that tuberculosis progression changes rapidly during this period (high in 

early infancy and lower in later childhood).6 For later childhood, model results were 

consistent with the literature suggesting that incidence is lower than in adulthood,6 although 

some recent studies have suggested faster progression during these ages.40,41 The trends in 

the risk group results were generally consistent with empirical evidence, but substantial 

variation was still seen between models.

We found a range of evidence sources cited in support of the parameter values used in the 

studies we reviewed. These evidence sources included modelling studies, empirical studies, 

and review articles. Some of the evidence sources classified as modelling studies were 

rigorously calibrated to empirical evidence (most notably the Vynnycky and Fine36 analysis 

cited by 21% of all reviewed studies), and so it should not be inferred that papers citing 

earlier modelling papers are necessarily less valid. However, it is possible that using earlier 

modelled studies as a source of parameter values played a part in the heterogeneity of results 

we observed, since errors can be introduced in the process of extracting and repurposing 

these parameters. Even if the original model produced valid results, the same parameter 

values will have different implications when used in a model with a different structure, or if 

the values of related parameters are different. Consequently, even when appropriate evidence 

is cited, this does not necessarily imply that the predictions produced by the model will be 

accurate. For the 24% of studies that gave no citation for their parameter values, it is 

possible that these values were informed by empirical data collected as part of the study. 

However, this explanation is unlikely to apply to more than a very small number of studies, 

if any. For the rest, the source of evidence is simply unknown.

Our analysis has several limitations. First, because we reproduced model predictions on the 

basis of the content of published articles, it is possible that some of the extreme results 

represented typographical errors in how studies reported their approach or that parameter 

values used in the analysis were modified from those reported in the paper. Although we did 

double extraction, we did not contact original authors to confirm study assumptions. Second, 

the way we programmed the models might have differed from the approach used in the 

original analysis. These differences could produce discrepancies between our results and 

those of the original analysis, although these discrepancies are likely to be minor. Third, it is 

possible that some analyses were not attempting to reproduce tuberculosis epidemiology 

exactly, and that the disease was only used as a motivating example for investigating the 

properties of transmission models. Although this might be true for some studies, we were 

not able to distinguish these studies in any way. For example, no clear difference was seen 

between the predictions derived from analyses published in applied journals and those 

published in mathematical biology journals. Moreover, even if a particular study did not 

intend to fully capture tuberculosis epidemiology, it is still part of the tuberculosis modelling 
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literature, and, as we did, readers might assume that the findings of these analyses pertain to 

real tuberculosis epidemiology even if this was not the intention. Finally, the empirical 

studies that we used as a point of comparison are not perfect. Not only do they represent 

particular populations, but the tests used to diagnose tuberculosis infection and active 

disease have imperfect sensitivity and specificity. Consequently, modelled results might not 

be expected to reproduce these results exactly.

Analyses that mischaracterise tuberculosis disease dynamics might produce biased estimates 

of descriptive epidemiology or the impact of policy change. For example, if model 

assumptions produce erroneously high incidence of active tuberculosis disease after initial 

infection, population-level incidence and prevalence could be overestimated, and therefore 

the beneficial impact of interventions to reduce tuberculosis transmission could also be 

overestimated. Similarly, if analyses do not allow for declines in incidence with time since 

infection, then estimates of the impact of latent tuberculosis infection prophylaxis for 

individuals with distant infection will be biased upwards. Incorrect assumptions about how 

risk factors modify tuberculosis incidence could harm the assessment of interventions 

targeted at these risk factors. Moreover, because many modelling studies calibrate their 

transmission model to reproduce commonly reported tuberculosis outcomes, an incorrect 

assumption in one part of the analysis can lead to incorrect assumptions in other parts of the 

analysis. For example, for analyses calibrated to tuberculosis case notifications, if model 

assumptions produce erroneously high incidence following initial infection, this could lead 

to, among other things, a downward bias in estimated tuberculosis transmission, a downward 

bias in latent tuberculosis infection prevalence, or a downward bias in the proportion of 

tuberculosis cases detected. Each of these changes could introduce biases into the primary 

outcomes of an analysis. For example, underestimation of latent tuberculosis infection 

prevalence could lead to underestimation of the costs of a programme to screen for and treat 

latent infection to avert active disease.

We evaluated a single characteristic of tuberculosis transmission models: the assumptions 

made about progression after initial infection. Since we did not reproduce all features of all 

modelled analyses, we cannot draw conclusions about whether the discrepancies that we 

described led to biased results in any given study. However, these discrepancies are likely to 

have led to biased results in some cases. Although re-evaluation of published results might 

be impractical, our findings have clear implications for future work. This research is 

accelerating; there were 33 tuberculosis modelling publications in the first 8 months of 2017, 

greater than the total for 2016, and greater than the sum of all papers published before 2000. 

For future studies that use mathematical models to investigate tuberculosis epidemiology or 

compare policies, our results provide strong motivation to ensure structural assumptions are 

appropriate, and to check that analyses reproduce known features of tuberculosis 

epidemiology. For consumers of modelling studies, our results suggest that the findings of 

these studies should not be accepted uncritically. Although major gaps exist in the evidence 

base for constructing and evaluating the validity of these models,15 it is still important 

(perhaps more important) to make the best use of the evidence that is available. Greater 

confidence might be placed in analyses in which modelling approaches are clearly explained 

and justified with reference to the available evidence and that can reproduce data relevant to 

the setting and population being modelled.
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Figure 1. Classification of model types and transition probabilities
Some model structures are special cases of other structures. For example, structures A and C 

are special cases of structures E and G, with parameter “a” set to zero. S=susceptible 

compartment (not infected with tuberculosis and not previously exposed). λ =force of 

infection for Mycobacterium tuberculosis. L=latent M tuberculosis infection compartment. 

c=rate of progression to active tuberculosis for individuals in the latent compartment or slow 

latent compartment. I=active tuberculosis disease compartment. Ls=slow latent M 
tuberculosis infection compartment. Lf=fast latent M tuberculosis infection compartment. 

f=rate of transition to the fast latent compartment for individuals in the slow latent 

compartment. d=rate of progression to active tuberculosis for individuals in the fast latent 

compartment. e=rate of transition to the slow latent compartment for individuals in the fast 

latent compartment. a=probability of immediate progression to active tuberculosis 

compartment, for individuals in susceptible compartment who are infected with M 
tuberculosis. b=probability of progression to fast latent compartment, for individuals in 

susceptible compartment who are infected with M tuberculosis. *Structure B involves a set 

of tunnel states for recent latent infection (Lf1..Lfn), whereby individuals not progressing to 

active tuberculosis transition deterministically to next tunnel state (n+1) at each time step. 

Each of these compartments has a different progression risk (d1..dn). †Structure J involves a 

sequence of latent compartments (L1..Ln), with individuals only transitioning to the active 

tuberculosis compartment from the final compartment. ‡Structures K and L involve a single 

latent compartment, with the rate of transition to active tuberculosis calculated as a function 

of time since infection. Both of these structures were implemented using individual-based 

models, allowing time since infection to be tracked at the individual level.

Menzies et al. Page 15

Lancet Infect Dis. Author manuscript; available in PMC 2018 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Flow diagram of studies assessed for the review
*Other sources included a database of modelling publications compiled by the TB 

Modelling and Analysis Consortium, the reference lists of eligible publications, a group of 

non-indexed journals, and the personal databases of the authors to identify publications not 

included in the electronic search.
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Figure 3. 
Model predictions for annual (A) and cumulative (B) incidence of active tuberculosis by 

years since infection, for population groups with no individual risk factors
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Figure 4. Distribution of model predictions for cumulative incidence of active tuberculosis at 2 
(A) and 20 (B) years since Mycobacterium tuberculosis infection; stratified by model structure, 
individual risk factors*, and other study characteristics
ART=antiretroviral therapy. *Individual results not shown for structures D, G, H, I, J, and K, 

as less than five studies used these structures to model individuals with no other risk factors. 

†Only includes results for population groups with no individual factors modifying 

tuberculosis progression risks. ‡20-year cumulative incidence projections are not shown for 

these groups because of potential for unmodelled changes in risk factors.
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Figure 5. Comparison between model predictions and empirical evidence for annual (A) and 
cumulative (B) incidence of active tuberculosis by years since Mycobacterium tuberculosis 
infection, for groups with no individual risk factors
Empirical estimates based on the British Medical Research Council BCG trials 

(Sutherland)26 and the US Public Health Service’s isoniazid trials (Ferebee).28
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Table

Descriptive statistics of included studies

Number of publications (% of total)

Publication year

1960–69 4 (1·3%)

1970–79 1 (0·3%)

1980–89 1 (0·3%)

1990–99 15 (4·8%)

2000–09 95 (30·4%)

2010–17 196 (62·8%)

Model structure*

A 60 (19·2%)

B 27 (8·7%)

C 33 (10·6%)

D 3 (1·0%)

E 153 (49·0%)

F 35 (11·2%)

G 1 (0·3%)

H 2 (0·6%)

I 2 (0·6%)

J 1 (0·3%)

K 1 (0·3%)

L 1 (0·3%)

Setting*

High burden 193 (61·9%)

Low burden 72 (23·1%)

Not specified 72 (23·1%)

Risk strata*

Age 29 (10·0%)

Drug resistance 10 (3·2%)

Foreign born 5 (1·6%)

Genetic susceptibility 4 (1·4%)

Poverty 1 (0·3%)

Rural vs urban 1 (0·3%)

Sex 2 (0·7%)

Smoking 4 (1·4%)

Incarceration 2 (0·7%)

Diabetes 2 (0·7%)
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Number of publications (% of total)

Famine vs nutrition 2 (0·7%)

Hepatitis B virus 1 (0·3%)

HIV 79 (27·1%)

Malaria 1 (0·3%)

Silicosis 2 (0·7%)

Any risk stratification 122 (39·1%)

See figure 1 for the model structures.

*
Categories sum to more than 100% because some papers are included in multiple categories (ie, use multiple different structures, present results 

for multiple settings, or stratify progression risk along multiple dimensions).
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